LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
B.Sc. DEGREE EXAMINATION – MATHEM	ATICS	
FIFTH SEMESTER – NOVEMBER 20	22	
17/18UMT5MC02 – STATICS		
Date: 25-11-2022 Dept. No.	Max. : 100 Marks	
Time: 09:00 AM - 12:00 NOON		
PART-A		
Answer all questions:	(10x2=20 Marks)	
1. Define the composition and resolution of a system of concurrent forces.		
2. State the parallelogram law of forces.		
3 . Define (a) like parallel forces and (b) unlike parallel forces.		
4. Define moment of a force.		
5. Define center of mass.		
6. State the formula for coordinates of the center of gravity of a rigid body.		
7. Define unstable equilibrium and give one example		
8. State Hook's law.		
9. Define sag.		
10. Define catenary.		
PART-B		
Answer any FIVE questions:	(5x8=40 Marks)	
11. Determine the magnitude and direction of the resultant of two given forces with a common point		
of application.		

- 12. Two forces acting on a particle are such that if the direction of one of them is reversed, the direction of the resultant is turned through a right angle. Prove that the force must be equal in magnitude.
- **13**. Find the resultant of two like parallel forces.
- 14. State and prove Varignon's theorem on moments.
- 15. Find the center of gravity of a uniform triangular lamina.
- 16. Find the center of gravity of a solid circular cone.
- 17. Find the work done in stretching an elastic string from its natural length l to the length l'?
- 18. Derive the cartesian equation of the catenary.

PART-C

Answer any TWO questions:

- 19. a) State and prove the Lami's theorem.
 - b) Two weights P and Q are suspended from a fixed point Q by strings OA and OB and are kept apart by a light rod AB. If the strings OA and OB make angle α and β with the rod, show that the angle θ which the rod makes with the vertical is give by

$$\tan \theta = \frac{P+Q}{Q \cot \beta - P \cot \alpha}.$$
 (10 marks)

20. a) A uniform rod AB of length 2a and weight W is resting on two pegs C and D in the same level at a distance d apart. The greatest weights that can be placed at A and Bwithout tilting the rod are W_1 and W_2 respectively. Show that $\frac{W_1}{W+W_1} + \frac{W_2}{W+W_2} = \frac{d}{a}$.

(10 marks)

b) Find the center of gravity of a uniform circular arc subtending angle 2α at the centre.

		(10 marks)
21. a)	Discuss the stability of a body rolling over a fixed body.	(10 marks)

- b).State and prove the principle of virtual workfor a system of coplanar forces acting on a rigid body. (10 marks)
- 22. a) A string of length 2*l* hangs over two small smooth pegs in the same horizontal level. Show that, if h is the sag in the meddle, the length of either part of the string that hangs vertically is $h + l - \sqrt{2hl}$. (10 marks)
 - b) A string of length *l* hangs between two points not in the same vertical line and the tangents at the end points are inclined at an angle α and β with the horizontal. Show that the height of one

extremity above the other is
$$\frac{l\sin\left(\frac{\alpha+\beta}{2}\right)}{\cos\left(\frac{\alpha-\beta}{2}\right)}$$
 the two extremities being on the same side of the

vertex of the catenary.

(10 marks)

(10 marks)

(2x20=40 Marks)